7. Quale scienza è davvero utile?

In una scena cruciale del film Interstellar Murph risolve alla lavagna le equazioni che unificano relatività generale e meccanica quantistica, un po’ il Santo Graal della scienza contemporanea. Le lavagne che si possono osservare in diverse scene del film sono state scritte in dal premio Nobel per la fisica del 2017 Kip Thorne. Le equazioni e le formule rappresentate fanno riferimento alla teoria delle Stringhe, e descrivono una teoria della gravità in un numero di dimensioni maggiori di quelle a cui siamo abituati, tre dimensioni spaziali e una temporale. Thorne al pari di molti colleghi è ottimista: è inutile disperare, prima o poi ci arriveremo a risolvere le equazioni della teoria delle Stringhe e sciogliere l’enigma della gravità quantistica. E forse tra uno o due secoli scopriremo delle applicazioni utili e straordinarie della teoria delle Stringhe. Non possiamo dire oggi a cosa possano servire queste teorie astruse, come nel 1850 non poteva dire Faraday al ministro britannico a cosa mai potesse essere utile l’elettricità. Oppure no?

Lo sviluppo della teoria delle Stringhe ha occupato migliaia di fisici, certamente la maggioranza dei fisici teorici, negli ultimi quaranta anni. Uno sforzo immane, che, almeno come numero di addetti forse è confrontabile solo con il supporto dei fisici teorici al progetto Manhattan per lo sviluppo della bomba atomica o a quello che fu necessario per andare sulla Luna. Ma nonostante questo sforzo, non è chiaro oggi nemmeno se questa sia una teoria, se definiamo una teoria scientifica qualcosa che produce un insieme di equazioni che possono essere usate per produrre previsioni, o comunque delle istruzioni per spiegare quello che la teoria vuole descrivere.

Nel 2006 Lee Smolin scriveva: “la nostra comprensione delle leggi della natura ha continuato a crescere rapidamente per oltre due secoli, ma oggi, nonostante tutti i nostri sforzi di queste leggi non sappiamo con certezza più di quanto ne sapessimo negli anni 70’. Smolin indicava cinque grandi problemi nella fisica teorica che non erano ancora stati risolti: i. la gravità quantistica; ii. i fondamenti della meccanica quantistica; iii una teoria che unifichi le particelle e le forze; iv. Come sono scelti dalla natura i tanti parametri liberi del modello standard, da dove arrivano le masse delle particelle elementari; v. spiegare la materia oscura e l’energia oscura che costituiscono la gran parte (>95%) della materia/energia dell’Universo, oppure, se non esistono, spiegare come e perché la gravità si modifica su grandi scale, suggerendo la presenza di materia ed energia oscure. Tredici anni dopo la nostra comprensione di questi problemi non ha fatto grandi passi avanti. Il che porta a più di quattro i decenni senza progressi fondamentali nella fisica teorica. Che ci sia un problema sembra evidente. Le radici di questo problema potrebbero essere tante.

È arrivato il momento di affrontare una delle domande centrali che questo blog vuole discutere: quale e quanta ricerca è davvero utile? E come possiamo fare a capire, almeno in prima approssimazione quale scienza è utile e quale no? Per affrontare questo tema è comodo utilizzare uno schema mutuato da quello inventato da Jim Kalbach per rappresentare in maniera bidimensionale l’innovazione. Nell’originale, l’asse orizzontale rappresenta l’impatto sul mercato di una determinata tecnologia, e serve a misurare il grado di innovazione di nuovi prodotti. Nella mia applicazione, ho semplicemente sostituito impatto sul mercato con impatto scientifico, capacità di aprire nuovi campi. Il diagramma di Kalbach è diviso in quattro zone:

Progresso Incrementale: cambiamenti modesti nella tecnologia che mantengono un bussines (o un prodotto scientifico) competitivo.

Breaktrough: grandi avanzamenti tecnologici che però non hanno ancora prodotto un impatto analogamente forte sul mercato (o in un campo scientifico).

Game changer: un avanzamento tecnologico talmente grande da produrre un impatto radicale, tanto da trasformare il mercato (o aprire nuovi campi scientifici) e addirittura la società.

Disruptive: l’utilizzo di tecnologie che offrono prestazioni mediocri, ma che sono lo stesso in grado di trasformare il mercato (o aprire nuovi campi scientifici). Se applichiamo questo diagramma alla scienza possiamo catalogare allo stesso modo le tecnologie e le scoperte scientifiche nelle quattro zone, come nella figura che segue.

Il diagramma di Kalbach applicato alla tecnologia in Astronomia e Astrofisica

L’utilizzo del cannocchiale da parte di Galileo sicuramente è stato un punto di svolta, che non ha solo cambiato la nostra visione dell’Universo, ma anche il modo di pensare e di fare scienza, e di conseguenza anche la società.  Mutatis mutandis un ruolo analogo l’ha svolto l’Hubble Space Telescope (HST), o più recentemente gli interferometri gravitazionali Ligo e Virgo, che hanno creato un nuovo campo di investigazione, che semplicemente prima non c’era: l’astrofisica multi-messaggera. Un esempio di tecnologie breakthrough è la così detta ottica adattiva (AO), sistemi che riescono a correggere automaticamente le aberrazioni indotte dall’atmosfera terrestre nella formazione di immagini di sorgenti celesti per produrre immagini addirittura più acute di quelle prodotte da HST. Questi strumenti oggi non sono ancora di uso semplice, e quindi comune, e non hanno ancora trasformato il mercato scientifico, forse lo faranno nel prossimo decennio. Infine un esempio di tecnologie Disruptive è l’utilizzo del telescopio da 2.5m posto ad Apache Point Observatory, con cui si conduce la Sloan Digital Sky Survey. Il diametro di questo telescopio è esattamente quello dell’HST, ma il suo costo è un fattore >10.000 volte minore. Nondimeno, la produttività in termini di articoli di SDSS è maggiore di quella di tutti i telescopi esistenti, incluso HST. Una potenziale tecnologia Disruptive è quella dei Cubesat dedicati a misure scientifiche. Cubesat sono nano-satelliti del peso di qualche kg, in grado di ospitare quindi strumenti solo molto semplici. Il costo di un cubesat è però enormemente minore di quello delle sonde spaziali che oggi gli scienziati utilizzano per studiare l’Universo, e il loro tempo di sviluppo è di solo qualche anno, contro i decenni delle normali missioni spaziali Facendo un ulteriore passo, possiamo pensare di collocare nel diagramma di Kalbach anche le scoperte scientifiche, come nella figura che segue.

Il diagramma di Kalbach applicato alle scoperte scientifiche: La rivelazione diretta di onde gravitazionali da parte degli interferometri Ligo/Virgo e la scoperta degli oceani globali sotto nelle lune ghiacciate di Saturno e Giove,  in alto a destra. La visita di Rosetta alla cometa Churymov-Gerasimenko e la scoperta di molecole prebiotiche nella coda nella cometa e sulla sua superficie, in alto a sinistra. La scoperta dell’espansione accelerata dell’Universo in basso a destra.

Certamente la rivelazione diretta di onde gravitazionali e’ stato un Game Changer. Rappresenta la prima applicazione potente dell’astrofisica multimessaggera. Alle 12:41 del 17 agosto 2017 gli interferometri LIGO e Virgo hanno rivelato un potente segnale gravitazionale che è durato una decina di secondi e al quale è seguita, dopo circa 1,7 secondi, la rivelazione di un Gamma Ray Burst corto da parte dei satelliti Fermi e INTEGRAL. Quella che prima era una inferenza, una aspettazione di un modello, si era trasformata in una osservazione, abbiamo visto un GRB corto associato alla coalescenza di due stelle di neutroni, abbiamo davvero osservato lo stesso evento sia utilizzando la luce, la radiazione X e gamma, che le onde gravitazionali. La regione di cielo da cui i segnali si originavano è stata vincolata con una accuratezza molto migliore di quella dei primi eventi gravitazionali, sia grazie alla presenza di un terzo interferometro gravitazionale in funzione, Virgo, vicino Pisa, sia incrociando il box di errore di LIGO/Virgo con quelli di Fermi e INTEGRAL. Poi, l’ampiezza del segnale gravitazionale è proporzionale sia alle masse degli oggetti in gioco che alla distanza dell’evento. Il caso di 17 agosto 2017 è stato particolarmente fortunato, perché’ la distanza è risultata particolarmente piccola, solo una quarantina di Mpc. Fino a questa distanza nei 30 gradi quadri del box di errore combinato sono presenti solo una cinquantina di galassie. È stato quindi relativamente facile osservarle tutte per vedere se per caso in qualcuna si fosse attivata una sorgente transiente in luce ottica. E in effetti una nuova sorgente ottica è stata trovata subito nei dintorni della galassia NGC4993.  Questa sorgente è stata osservata da una flotta imponente di telescopi sia a terra che nello spazio, in tutto più di 70 telescopi, sensibili alla luce dalle radio onde alla luce ottica, ai raggi X. La nuova sorgente ottica come prevedevano i modelli era una così detta kilonova, alimentata dal decadimento radioattivo dei nuclei pesanti sintetizzati nella regione subito esterna alla coalescenza delle stelle di neutroni. Queste stelle sono composte come il nome suggerisce da materia ad altissima densità composta per lo più da neutroni e nuclei di metalli pesanti come il ferro. La maggior parte della materia che costituiva le due stelle di neutroni coalesce a formare un buco nero, ma una frazione rimane all’esterno dell’orizzonte degli eventi, in strutture come dischi di accrescimento e venti. A causa dell’altissima densità neutronica in queste strutture, è probabile che nuclei pesanti catturino neutroni, e diventino instabili per decadimento radioattivo. La radiazione prodotta è quella che è stata osservata in ottico e nel vicino infrarosso. In questi venti vengono quindi sintetizzati elementi pesanti in maniera efficiente. Si pensa che la maggior parte degli elementi più pesanti del ferro, tra cui l’oro, vengano in effetti sintetizzati nelle kilonovae. Da cui i titoli sui giornali, che appunto riportavano della scoperta come quella delle fabbriche cosmiche di oro e altri materiali preziosi. Di nuovo, un modello si è trasformato in una osservazione grazie alla nascente astrofisica multi-messaggera.

Nella figura in alto a sinistra è rappresentata la sonda dell’ESA Rosetta che visita la cometa Churymov-Gerasimenko. Rosetta ha effettuano moltissime osservazioni che hanno permesso scoperte fondamentali. Due delle scoperte più importanti sono stata certamente la presenza di molecole prebiotiche e di fosforo nella coda della cometa[1] e la scoperta che la cometa è completamente coperta di materiale organico[2]. Lo spettrometro di massa ROSINA, ha individuato tra gli elementi volatili la presenza di methylamina e ethylamina, due molecole prebiotiche di cui sono composti gli aminoacidi. Gli aminoacidi sono le molecole di cui sono composte le proteine, e in particolare tutte le proteine che conosciamo sulla terra sono composte da venti aminoacidi. ROSINA ha quindi identificato nella coda della cometa la presenza di Glycine, il più leggero degli aminoacidi, in forma volatile e infine, ha trovato anche molto fosforo. Il fosforo è un elemento cruciale per la chimica della vita, perché’ è presente nello scheletro del DNA e nella molecola ATP (Adenosine Tri Phosphate), che è fondamentale per la produzione di energia nelle cellule e quindi in tutti gli esseri viventi. Allo stesso tempo, ci si era resi conto che la cometa era completamente ricoperta di materiale organico. La naturale inferenza è che il suolo della cometa debba essere ricco di molecole prebiotiche, e forse anche di aminoacidi più complessi e pesanti del Glycine. E proprio scoprire molecole prebiotiche complesse era l’obiettivo principale della sonda Phillae, che staccatasi da Rosetta avrebbe dovuto posarsi gentilmente sulla cometa, ed effettuare analisi in situ. Come sappiamo la sonda è effettivamente riuscita ad “accometare” ma purtroppo non è riuscita ad ancorarsi solidamente sulla superficie, e, dopo qualche rimbalzo, è andata ad incastrarsi in un crepaccio. Il trapano, ideato e costruito in Italia dal Politecnico di Milano, che doveva perforare la superficie della cometa, ed estrarre campioni da far analizzare allo spettrometro di massa COSAC, è uscito come previsto dal suo alloggiamento, ma purtroppo non ha trovato il suolo.  E quindi non è stato possibile portare a termine questo esperimento cruciale. Oggi supponiamo, ma non sappiamo per certo, che i mattoni della vita siano presenti sulle comete, come non sappiamo se questi da questi mattoni si siano riuscite a formare strutture ancora più complesse, proteine o addirittura frammenti di RNA, in un ambiente così ostile come lo spazio. È evidente che scoprire tracce di vita nello spazio, su una cometa o altrove, sarà un Game Changer, una scoperta che avrà un impatto profondo e radicale non solo sulla scienza, ma su tutta la società. Un evento che per alcuni è scontato, non si tratta di scoprire se c’è vita altrove nello spazio, ma solo di capire fino a che punto la vita si sviluppa in ambienti cosmici. Mi piace ricordare quello che scrive il premio Nobel Christian De Duve: “I mattoni della Vita si formano naturalmente nella nostra Galassia, e probabilmente anche altrove nel cosmo. I semi chimici della vita sono Universali[3]. E ancora: “La Vita è una manifestazione obbligatoria della materia, è codificata nella trama stessa dell’Universo[4]. Rosetta e Phillae non sono riusciti, ma davvero per poco, ad innescare questa rivoluzione. Ci proverà forse nel prossimo futuro la missione  della NASA CESAR, che ha lo scopo di riportare sulla Terra campioni della superficie della cometa Churymov-Gerasimenko. La scelta della cometa non è casuale. Rosetta ha effettuato uno studio dettagliatissimo di Churymov-Gerasimenko, lasciando una vera e propria legacy in termini di immagini ad altissima risoluzione e dati sull’ambiente cometario. Questa cometa è sicuramente quella meglio conosciuta, e quindi quella che minimizza i rischi inevitabili a cui vanno incontro missioni che hanno l’ambizione di posarsi su una cometa, prendere qualche sassolino, e poi ripartire alla volta della Terra. CAESAR per ora non è stata selezionata per la realizzazione dalla NASA, ma non è detto che non lo sarà in futuro. È un vero peccato che una missione simile non sia stata immaginata dall’ESA, come il naturale proseguimento del grande successo di Rosetta, su tempi scala magari più ravvicinati.


Leggi tutto


Prossima pubblicazione: 8 marzo 2020. 8. Ricerche che producono avanzamenti sostanziali verso ricerche incrementali


[1] Kathrin Altwegg e collaboratori, 2016, Science

[2] Fabrizio Capaccioni e collaboratori, 2015, Science, 347

[3] Singularities, landmarks on the pathway of Life. Cambridge University Press 2005

[4] Phyl. Trans. Royal Soc. 2011

Una risposta a “7. Quale scienza è davvero utile?”

  1. I’ve been browsing on-line more than 3 hours these days,
    but I by no means found any fascinating article like yours.
    It is beautiful price enough for me. Personally,
    if all web owners and bloggers made just right content
    material as you did, the web will be much more useful than ever
    before.

    Here is my web site – CBD for Sale

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *